
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330423705

Interferometry and coherence of nonstationary light

Article  in  Optics Letters · January 2019

DOI: 10.1364/OL.44.000522

CITATIONS

11
READS

237

6 authors, including:

Matias Koivurova

University of Eastern Finland

54 PUBLICATIONS   403 CITATIONS   

SEE PROFILE

Lutful Ahad

University of Eastern Finland

5 PUBLICATIONS   34 CITATIONS   

SEE PROFILE

Jari Turunen

University of Eastern Finland

463 PUBLICATIONS   10,741 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Matias Koivurova on 21 January 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330423705_Interferometry_and_coherence_of_nonstationary_light?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330423705_Interferometry_and_coherence_of_nonstationary_light?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matias-Koivurova?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matias-Koivurova?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Joensuu?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matias-Koivurova?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lutful-Ahad-2?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lutful-Ahad-2?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Joensuu?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lutful-Ahad-2?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jari-Turunen-3?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jari-Turunen-3?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Joensuu?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jari-Turunen-3?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Matias-Koivurova?enrichId=rgreq-b5607721f3e2a9374722e03ce917b5f0-XXX&enrichSource=Y292ZXJQYWdlOzMzMDQyMzcwNTtBUzo3MTc0NzU2MjA1OTc3NjBAMTU0ODA3MDkyNjE1NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Letter Optics Letters 1

Interferometry and coherence of nonstationary light
MATIAS KOIVUROVA1* , LUTFUL AHAD1, GIANLUCA GELONI2 , TERO SETÄLÄ 1 , JARI TURUNEN1 , AND

ARI T. FRIBERG1

1University of Eastern Finland, Institute of Photonics, P. O. Box 111, FI-80101 Joensuu, Finland
2European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
*Corresponding author: matias.koivurova@uef.fi

Compiled December 10, 2018

We consider temporally integrating interferometric
measurements and their relation to the coherence prop-
erties of nonstationary light. We find that perform-
ing such experiments as a function of time delay is
equivalent to spectrally resolving the interference pat-
terns, and time domain coherence information can be
obtained from field autocorrelation only if the source is
of the Schell-model type. In analogy to autocorrelation,
we introduce field cross-correlation, which can be used
to determine the complete complex field of unknown
signal pulses if suitable probe pulses are available. We
demonstrate our findings with simulated supercontin-
uum and free-electron laser ensembles, and discuss the
prospect of carrying out experiments. © 2018 Optical Soci-

ety of America

OCIS codes: (030.1640) Coherence; (030.6600) Statistical optics;
(320.5550) Pulses; (120.3180) Interferometry.
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Temporal coherence of pulsed fields is of great interest to the
scientific community, with an increasing supply of light sources
for different applications. Variable delay Michelson’s interfer-
ometer has conventionally been employed to measure the tem-
poral coherence of stationary light [1]; however, for nonstation-
ary pulsed light the situation is more involved. An important
directly measurable coherence quantity for pulsed light is the
Dudley–Coen degree of coherence [2, 3]. In an experimental
setting it is obtained by interfering consecutive pulses with a
modified Michelson interferometer and spectrally resolving the
fringe pattern. This method characterizes the quasi-coherent
part of the spectral degree of coherence, and it has been em-
ployed to assess the coherence of supercontinuum light [3–6],
although it has limitations due to requiring two consecutive
pulses and spectral resolution.

A general method to quantify the degree of temporal coher-
ence of a train of pulses is to measure the amplitude and the
phase of the field in a single-shot manner, for instance with a
FROG [7] or a SPIDER [8]. Afterwards, one can compute the
mutual coherence function (MCF) and the cross-spectral den-
sity (CSD) from the data, given that the measurements are done
over a sufficiently large ensemble of pulses. This approach is

applicable to a variety of sources, mainly in the domain of vis-
ible light. Since nonlinear materials in shorter wavelengths are
scarce, these methods cannot be applied easily to synchrotron
or free-electron laser (FEL) radiation.

Recently, it was proposed that estimating the temporal de-
gree of coherence and the pulse length from field autocorrela-
tion measurements is possible, if single-shot interference pat-
terns can be recorded. The idea is to compare two differently
ensemble-averaged autocorrelation traces: one where the phase
is kept throughout averaging, and one where the phase is re-
moved prior to it. It is then concluded that the pulse length and
coherence time can be found with such measurements [9]. This
method was employed for the estimation of FEL-pulse charac-
teristics [10], and an in-depth analysis of the scheme has also
been carried out for a particular type of pulses [11, 12]. In the
present study, we examine the applicability of such interfero-
metric methods for general pulsed fields and expand the possi-
ble measurements onto field cross-correlations.

We represent the random light field by the complex analytic
signal E(t) and its Fourier transform E(ω), i.e.,

E(t) = F{E(ω)} =
1

2π

∫ ∞

0
E(ω) exp (−iωt)dω, (1)

where the lower limit is zero due to analyticity. The temporal
coherence properties of nonstationary light can then be quan-
tified by means of the MCF in the time domain, and the CSD
in the spectral domain, defined in the average (t̄, ω̄) and differ-
ence (∆t, ∆ω) coordinates as [13]

Γ(t̄, ∆t) = 〈E∗(t̄ − ∆t/2)E(t̄ + ∆t/2)〉, (2)

W(ω̄, ∆ω) = 〈E∗(ω̄ − ∆ω/2)E(ω̄ + ∆ω/2)〉, (3)

respectively, where the asterisk denotes complex conjugation
and the angle brackets stand for ensemble averaging over the
pulse train. These functions contain all the coherence informa-
tion of the pulsed field, including the intensity Γ(t̄, 0) = I(t̄)
and the spectral density W(ω̄, 0) = S(ω̄). The MCF and CSD
can be normalized, yielding the complex degrees of coherence

γ(t̄, ∆t) =
Γ(t̄, ∆t)

√

I(t̄ − ∆t/2)I(t̄ + ∆t/2)
, (4)

µ(ω̄, ∆ω) =
W(ω̄, ∆ω)

√

S(ω̄ − ∆ω/2)S(ω̄ + ∆ω/2)
. (5)

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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These correlation functions contain a great amount of informa-
tion, but there is no known general method to directly mea-
sure them, the best way being single-shot pulse shape measure-
ments over a large ensemble of pulses. In some cases this is
impractical or even impossible, and therefore we will consider
experimentally simpler schemes.

We shall begin from the simplest case, the variable delay
Michelson interferometer. It measures the field autocorrelation
A(∆t) of time-domain pulses E(t) as in

A(∆t) =
∫ ∞

−∞
E∗(t − ∆t/2)E(t + ∆t/2)dt. (6)

Inserting from Eq. (1) into Eq. (6) and applying straightforward
calculus, leads to an expression in terms of the spectral ampli-
tudes E(ω)

A(∆t) = F{|E(ω)|2}. (7)

This result is the well-known autocorrelation theorem, and it
has profound consequences in Michelson interferometry. One
might intuitively think that the field autocorrelation is directly
related to the temporal pulse shape and duration, but this is in
fact not the case. The autocorrelation theorem of Eq. (7) holds
for any spectral phase, and as such it is insensitive to changes
in the pulse shape and length, given the spectrum does not
change. Actually, field interferometric techniques in the tem-
poral domain yield only spectral domain information, and vice
versa. This is in contrast to the widely employed intensity au-
tocorrelation, which does provide some estimate of the pulse
length, but it is a nonlinear measurement [13]. However, if ad-
ditional knowledge on source characteristics is available, spec-
tral measurements can yield time-domain coherence informa-
tion, as we will see later. All of the following temporal field
correlation measurements have spectral domain counterparts,
but components with different frequencies produce a rapidly
moving interference pattern, which cannot be measured with
modern detectors. Therefore we will not discuss them here.

A detector faster than the repetition rate of the laser would
enable to record the autocorrelation of each pulse separately.
Ensemble averaging the resulting single-shot traces yields

〈A(∆t)〉 = F{〈|E(ω)|2〉} = F{S(ω)}. (8)

Such a measurement contains information on the power spec-
trum of the source, which is sufficient for evaluating the coher-
ence time of stationary and quasi-stationary light [14]. In fact,
comparing Eqs. (2) and (6) reveals that the ensemble averaged
field autocorrelation equals the time integrated MCF, viz.,

〈A(∆t)〉 =
∫ ∞

−∞
Γ(t, ∆t)dt. (9)

This, in turn, indicates that 〈A(∆t)〉 provides the coherence cor-
rectly for sources that are of the Schell-model type, i.e., sources
whose correlation function varies only along the time delay axis
∆t. However, from the measurements alone there is no way of
knowing whether a source has this property. In the case of more
coherent light, the measurement becomes problematic. For ex-
ample, for a completely coherent pulse train, a field autocorre-
lation measurement always yields a finite coherence time corre-
sponding to the Fourier transform of the power spectrum (i.e.,
transform-limited pulse duration).

We can employ the method proposed in [9] to find indica-
tions of reduced coherence from single-pulse autocorrelation

measurements, even if the source is not of the Schell-model
type. Discarding the phase before ensemble averaging, we get

〈|A(∆t)|〉 = 〈|F{|E(ω)|2}|〉. (10)

If the train of pulses is completely coherent, then necessarily
〈|A(∆t)|〉 = |〈A(∆t)〉|. For a pulse train that features spectral
amplitude fluctuations, 〈|A(∆t)|〉 displays a pedestal in addi-
tion to the autocorrelation peak [9, 11]. Consequently, any dif-
ference between Eqs. (9) and (10) indicates reduced coherence,
but the degree of coherence cannot be numerically estimated.
Due to Eq. (7), this method is blind to spectral phase and cannot
measure changes in the pulse length which arise from spectral
phase variations. This also means that it cannot discern a par-
tially coherent pulse train from a completely coherent one, if the
amplitudes of the Fourier spectra for the individual pulses stay
constant. Hence, it is desirable to look for techniques which
yield more information on the properties of pulse trains.

Let us take two different time domain pulses, Ei(t) and Ej(t),
where i 6= j. Correlating these in an interferometer results in the
field cross-correlation

X(∆t) =
∫ ∞

−∞
E∗

i (t − ∆t/2)Ej(t + ∆t/2)dt. (11)

As in Eqs. (6) and (7), we find that the field cross-correlation is
the Fourier transform of the interfering Fourier components

X(∆t) = F{E∗
i (ω)Ej(ω)}. (12)

This result is the cross-correlation theorem. Unlike the autocor-
relation theorem, it retains spectral phase and thus may yield
more information on the field. In the best-case scenario, the
complete complex fields of unknown signal pulses can be re-
trieved if one has known and highly coherent probe pulses.
This is achieved, for example, when a stable pulse train from
a mode-locked laser with known output is split into two and
one of the trains is passed through some dynamic system. Then
the original pulses can be used to probe the modulated signal
pulses. Taking the pulses Ei(ω) as the probe and Ej(ω) as the
signal, we can straightforwardly find the signal pulses from
Eq. (12), and hence construct the associated complex correla-
tion functions. This allows us to assess the effect of the optical
system on pulse coherence. The novel cross-correlation mea-
surement is effectively spectral interferometry without a spec-
trograph, enabling one to find the amplitude and phase of the
individual signal pulses.

It is possible that the pulse repetition rate is too high to per-
form single-shot measurements in this configuration, in which
case it is necessary to look at what information can be retrieved
from the ensemble average 〈X(∆t)〉. If we take the probe pulse
train Ei(ω) as completely coherent, we can remove it from av-
eraging and obtain

〈X(∆t)〉 = F{E∗
i (ω)〈Ej(ω)〉}, (13)

implying that the ensemble averaged cross-correlation between
the probe and signal pulses can be separated into the coherent
probe and the mean signal field. If the mean signal is separa-
ble to quasi-coherent and quasi-stationary contributions, then
〈X(∆t)〉 can be used to construct the quasi-coherent part of the
CSD [3]. Sources with this property include supercontinua (SC)
generated in nonlinear fibers, which we will examine next.

Assume that Ei(t) and Ej(t) are two different pulses from a
fiber-generated SC source. If the source produces N different
pulse realizations, we can pick N2 − N pairs from that group.
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Considering all possible combinations, we may write the en-
semble averaged cross-correlation as

〈X(∆t)〉 =
1

N2 − N
F

{ N

∑
i 6=j

E∗
i (ω)Ej(ω)

}

. (14)

Since we are summing over all pairs, the quantity in the curly
brackets is real. Including all pairings into the cross-correlation
is not realistic in practice. However, the imaginary part of the
function decreases rapidly and picking sufficiently many pulse
pairs from the train leads to a good approximation of Eq. (14).
The cross-correlation can further be expressed as

〈X(∆t)〉 =
1

N2 − N
F

{

|
N

∑
i=1

Ei(ω)|2 −
N

∑
i=1

|Ei(ω)|2
}

, (15)

which can be simplified by introducing the ensemble averages

〈X(∆t)〉 =
1

N − 1
F
{

N|〈E(ω)〉|2 − 〈|E(ω)|2〉
}

. (16)

Performing this measurement over a large ensemble of pulses,
the last term becomes insignificant and we may approximate

〈X(∆t)〉 ≈ F{Sqc(ω)}, (17)

where Sqc = |〈E(ω)〉|2 is the quasi-coherent part of the spec-
trum [3]. A field cross-correlation performed in this manner
yields the same result as a modified Michelson interferometer
used to measure the Dudley–Coen degree of coherence [3, 5].
But the spectral resolution is introduced via temporal integra-
tion rather than a spectrograph, greatly simplifying the setup
and enabling the measurement of weaker trains.

In order to illustrate the quality of data one may obtain from
measurements outlined above, we shall next turn to simulated
ensembles of SC and FEL pulses, starting with the former. We
employ the definitions in Eqs. (4) and (5) to quantify the coher-
ence properties of the pulse ensembles, and compare the results
to the quantities obtained with relatively simple interferometric
experiments. We used 1000 SC realizations that were generated
by numerically solving the generalized nonlinear Schrödinger
equation, details of which can be found elsewhere [15]. The en-
semble simulates a case in which 1060 nm and 1 ps pump pulses
are injected into a 20 cm long anomalously dispersive fiber, re-
sulting in a very low coherence pulse train [3]. The absolute val-
ues of the complex degrees of coherence are given in Fig. 1, to-
gether with the normalized average intensity and spectral den-
sity. The solid blue line denotes the complete intensity and spec-
trum, whereas the dashed red line is the quasi-coherent part ob-
tained by inverse Fourier transforming Eq. (17). Furthermore,
we have plotted the normalized temporal autocorrelation traces
obtained with both methods in Fig. 2, together with the normal-
ized temporal cross-correlation trace of Eq. (17). It needs to be
noted that unlike autocorrelation, the cross-correlation function
is not necessarily symmetric with respect to origin. It becomes
symmetric only in two cases: either when the pulse train is com-
pletely coherent, or when the ensemble is extended to infinity.

Figure 1 shows that the SC ensemble in this particular case
is nearly incoherent, with most of the spectrum dominated by
the quasi-stationary contribution (spectral region outside the
quasi-coherent peak). However, an autocorrelation measure-
ment would not yield a correct value for the coherence time,
since the SC radiation is clearly not of the Schell-model type.
In Fig. 2, we see how the different autocorrelations behave. A

_ _

_ _

Fig. 1. Coherence properties of the SC pulses. Upper row: ab-
solute values of the degrees of coherence in temporal and spec-
tral domains. Lower row: normalized intensity and spectrum
(solid blue lines), and the related quasi-coherent contributions
(dashed red lines). The average time t̄ is in the moving pulse
reference frame and the frequency ω̄ is with respect to the cen-
ter frequency ω0/2π = 283 THz.

Fig. 2. Normalized correlation traces for the SC source. Auto-
correlation with phase (solid red line), autocorrelation without
phase (dash-dotted green line), and cross-correlation (dashed
black line).

pedestal is formed when the phase is discarded prior to ensem-
ble averaging, which is a manifestation of decreased coherence.
The cross-correlation is also clearly different from the two auto-
correlation traces, though it is almost symmetric as well.

We then turn to a demonstration using FEL pulses. The FEL
ensemble was created with a dedicated program called Gene-
sis [16], which is a time-dependent simulation software that
solves the 3D FEL equations and yields a complete complex
representation of the FEL pulses. Genesis sub-samples the elec-
tron phase-space by means of macroparticles and discretizes
the electromagnetic field – which is calculated at different posi-
tions inside the FEL undulator – along a transverse grid and in
temporal slices. For this paper, an ensemble of 100 pulses with
a central wavelength of 0.15 nm were simulated using Genesis,
based on electron start-to-end simulations for a 17.5 GeV, 20 pC
electron beam in the linear regime at SASE1 undulator of the
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_ _

_ _

Fig. 3. Same as Fig. 1, but for an FEL pulse ensemble. The cen-
ter frequency for these pulses is ω0/2π = 2 EHz.

Fig. 4. Same as Fig. 2, but for an FEL pulse ensemble.

European X-ray free-electron laser (European XFEL) [17].

These particular FEL pulses are almost of the Schell-model
type, as can be seen from Fig. 3, and now the coherence time
may be estimated via field autocorrelation. In addition, the
pulse train is highly quasi-stationary, with nearly negligible
quasi-coherent contribution. SASE1 is based on self-amplified
spontaneous emission (SASE), that is, the electron shot noise is
amplified as the relativistic electron beam travels through the
FEL undulator. This mechanism intrinsically leads to fluctua-
tions from pulse to pulse due to which SASE based FELs typi-
cally have low spectral and temporal coherence, if several lon-
gitudinal modes are allowed to oscillate. By tuning the center
wavelength and the electron pulse duration, it is possible to con-
trol the number of statistically independent modes in the pulse
[18], in which case the field autocorrelation no longer is enough
to estimate the coherence time of the field, as was discussed af-
ter Eq. (9). In Fig. 4, we can see a more pronounced pedestal
than in the case of SC, because the FEL radiation does not have
a strong coherent peak in the spectrum. The cross-correlation
trace is found to be highly oscillating when compared to the
corresponding SC quantity. This is caused by the smaller en-
semble of FEL pulses – which was limited mainly by the large
size of the data – as well as the low degree of coherence of the
pulse train.

In conclusion, we have examined different types of field
interference measurement schemes and their properties. The
usual field autocorrelation in general gives only information on
the spectrum, but it can be used to estimate the coherence time,
provided additional evidence is available that the source is of
the Schell-model type. Discarding the phase and then perform-
ing an ensemble average over the autocorrelation traces can
yield some qualitative knowledge on the stability of the pulse
train, since the pedestal appears when coherence is low. As we
have demonstrated, there exist field interference experiments
that can provide markedly more information, namely the vari-
ations of field cross-correlation. Such measurements produce
more information due to the cross-correlation theorem retain-
ing the spectral phase, but they are more limited in applicability
than the field autocorrelation measurements. The most limiting
factor when considering, for instance, FEL pulses, could be the
relatively low repetition rate, which would necessitate the use
of a very long delay line. However, as proposed in [19] and
first tested in [20], a magnetic chicane between two undulator
parts – which will soon be available at the SASE2 line of the Eu-
ropean XFEL – can be used to measure the cross-correlation, at
least in the case when no major energy chirp is present in the
electron beam. This may open up the possibility to characterize
the coherence properties of FEL radiation in detail.
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