
Tutorial Vol. 41, No. 4 / April 2024 / Journal of the Optical Society of America A 615

Nonstationary optics: tutorial
Matias Koivurova,* Jyrki Laatikainen, AND Ari T. Friberg
Center for Photonics Sciences, Department of Physics andMathematics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
*matias.koivurova@uef.fi

Received 2 January 2024; revised 18 February 2024; accepted 19 February 2024; posted 22 February 2024; published 11 March 2024

Over the past several decades, nonstationary optics has risen as a key enabling technology for a multitude of novel
applications. These include areas of research such as micromachining and ultrafast optics, as well as the Nobel
awarded research in femtochemistry, optical frequency combs, and attosecond physics. This tutorial aims to
present some of the main concepts required to analyze nonstationary fields, with an emphasis on pulsed beams. The
work begins from the fundamental building blocks of such fields, and builds up to some of their main properties.
The spatiotemporal properties and stability of such fields are discussed in length, and some common measurement
schemes are reviewed. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.516951

1. INTRODUCTION

Nonstationary optics is a branch of photonics research, where
the main focus is on transient phenomena in electromagnetic
fields. In the broadest sense, this includes any type of time-
dependent fluctuation of a fully three-dimensional field, be it
in amplitude, phase, or polarization. In practice, however, it is
usually desirable to restrict one’s attention to a much narrower
class of fields: pulsed beams. Although such fields present only
a small subset of all possible nonstationary fields, they contain
a multitude of properties not found in statistically stationary
fields. In particular, pulses have a finite duration, which can be
used to investigate processes on the same time scale. The pulse
duration is also inversely related to the width of the pulse spec-
trum, so that a broader spectrum can support a shorter pulse.
This in turn means that a pulsed laser comes with a nonzero
frequency bandwidth. Moreover, pulses offer the possibility of
achieving very high peak powers, with the current record being
on the order of 1023 W/cm2 [1].

It is the aim of the present work to underline some of the main
properties of nonstationary fields, and to show how they are rel-
evant in cutting-edge research performed today. Indeed, pulses
are the modern workhorse for many advanced applications,
such as micromachining [2–4], femtochemistry [5–7], optical
frequency metrology [8–10], photonic and plasmonic Bose–
Einstein condensation [11,12], as well as ultrafast spectroscopy
[13], to name a few. The newest frontier in nonstationary optics
is attosecond science [14,15], which employs optical pulses on
the order of several tens to hundreds of attoseconds [16–18].
These can be used to directly measure the electric field of light
[19] or observe electron dynamics [20–22] or the buildup of
quantum interference [23,24]. The present tutorial is applicable
to pulses of any duration and bandwidth, while the ideas, math-
ematical formulation, as well as measurement schemes can be
extended to more general nonstationary fields.

The tutorial is structured as follows: we begin by giving def-
initions of the mathematical procedures and the desired fields
in Section 2. In Section 3 we expand the discussion with the use
of correlation functions, and show how statistically stationary
fields can be viewed as a limiting case of nonstationary fields.
Then we move on to the properties of nonstationary fields in
Section 4, after which we introduce some instrumentation and
measurement schemes in Sections 5 and 6, respectively. We then
briefly mention some topics that fall outside the scope of the
tutorial and give concluding remarks in Section 7.

2. ELECTROMAGNETIC FIELD

We begin by defining the types of waves we are interested in.
Light is an electromagnetic wave, although usually it is enough
to consider only the electric field, since most materials are
nonmagnetic at optical frequencies. Let us say that we have a
dielectric with a refractive index n, which is homogeneous and
isotropic, so that n does not depend on position or polarization.
To account for dispersion, we employ the Helmholtz equation

∇
2 Ẽ (r;ω)=−k2(ω) Ẽ (r;ω), (1)

where k(ω)= k0n(ω) with k0 = 2π/λ0 being the vacuum
wave number with the corresponding vacuum wavelength
λ0. Equivalently, we can write k(ω)=ω/c (ω), where
ω= 2πc 0/λ0 is the frequency, and c (ω)= c 0/n(ω) is the
phase speed of the wave, with c 0 being the speed of light in
vacuum. In Euclidean space, the general electric field vector that
satisfies the Helmholtz equation has three scalar components:

Ẽ (r;ω)=

 Ẽ x (r;ω)
Ẽ y (r;ω)
Ẽ z(r;ω)

 , (2)
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where the subscripts denote the three possible spatial directions
and the position vector contains the Cartesian coordinates
r= (x , y , z). We choose that the wave propagates towards
the positive half space z> 0. For now, we are going to restrict
our attention to single scalar components, which can be either
the x or y polarization in the present basis. It is also possible
to consider a different basis where the left and right circular
polarizations are the relevant scalar components.

Although the electromagnetic field is real valued, we often use
the complex analytic signal (see, e.g., [25], p. 92 et seq.), since it is
mathematically convenient. The complex analytic signal allows
us to write Fourier transform pairs of the form

E (r;t)=
∫
∞

0
Ẽ (r;ω) exp(−iωt)dω, (3)

Ẽ (r;ω)=
1

2π

∫
∞

−∞

E (r;t) exp(iωt)dt, (4)

where t is time, and the lower bound of zero in the frequency
integral is due to analyticity. Note that we denote frequency
domain fields with a tilde. This particular Fourier pair describes
how components with different frequencies, ω, have to be dis-
tributed to get the temporal field E (r;t). Moreover, the real field
is retrieved with

E (re)(r;t)=<{E (r;t)} , (5)

where< stands for the real part.
The simplest solution to the Helmholtz equation is a homo-

geneous monochromatic plane wave

E (r;t)=
√

I exp(i k · r− iωc t + iφ0) , (6)

given here in the time domain. Here
√

I is the amplitude of
the wave, k= (kx ,ky ,kz) is the wave vector, with the magni-
tude |k| = k = k0n(ωc ), ωc is the carrier frequency, and φ0 is
an arbitrary phase factor. This solution is perfectly stationary,
since all of its statistical moments are constant (see [25], p. 11 et
seq.). Most notably, the second moment, which we call average
intensity, is simply 〈|E (r;t)|2〉 = I , where angle brackets denote
averaging. We will discuss the possible averaging methods in
detail in the beginning of Section 3.

Armed with the simplest possible solution to the Helmholtz
equation, we can now draft what a nonstationary field looks
like. Although a single plane wave is stationary, we can use a
superposition of two (or more) plane waves to obtain a non-
stationary solution. This is mathematically possible, since the
Helmholtz equation is linear. That is, all linear combinations
of solutions are also solutions. Therefore, we take two fields
E1(t)= 1/2 exp(−iω1t) and E2(t)= 1/2 exp(−iω2t), with
the frequenciesω1 andω2, respectively, and let them interfere,

E1(t)+ E2(t)=
1

2
exp(−iω1t)+

1

2
exp(−iω2t) ,

=
1

2
exp(−iωt)

[
exp(−i1ωt/2)+ exp(i1ωt/2)

]
,

= exp(−iωt) cos(1ωt/2) , (7)

where 1ω=ω2 −ω1 is the difference frequency, ω=

(ω1 +ω2)/2 is the mean frequency, and we have left space

dependence implicit. We use the symbol ω for the mean fre-
quency, although it was used as the symbol for the absolute
frequency above. The reasoning behind this choice will become
apparent in Section 3.A. From here we immediately see that
intensity is given by I (t)= |E1(t)+ E2(t)|2 = cos2(1ωt).
Hence, the superposition of two statistically stationary (and
mutually correlated) fields of different frequencies yields a
nonstationary field. From this statement it follows that a pulse
cannot be stationary since it will contain more than one fre-
quency, which are correlated. This is the basis on which we shall
build the rest of the tutorial (in a similar fashion as in [26]).

3. CORRELATION FUNCTIONS

To move forward, we will need a short survey on partial coher-
ence. What sets partially coherent light apart from coherent
light is that the plane wave components that make up the
field might not be completely correlated with each other. Wolf
adapted the ideas of Zernike [27], and defined spatial coherence
as the ability of two fields to produce visible, time-averaged,
spatial interference fringes in an interferometric measurement
([25], p. 151). This is one possible definition (and probably the
most common one), although it is not the only possibility. The
motivation behind this definition is to tie correlation explicitly
to experiments, where we always use slow, time-averaging detec-
tors to observe the interference. Since time-averaging detectors
will also average over temporal interference fringes, such mea-
surements do not allow for the study of spectral and temporal
correlations.

If we take the superposition of two plane waves as a concrete
example, we know that (i) the two waves are individually com-
pletely coherent and (ii) they have a constant, well-defined phase
relation between each other. Thus, one would expect that the
resulting superposition is also completely coherent. However,
taking the time average over the interference pattern we find that

lim
T→∞

1

T

∫ T

0
cos2(1ωt/2) dt = 1/2, (8)

which means that the interference pattern is not visible with
slow detectors, and one might conclude that the two plane wave
components are not correlated. If we instead suppose that the
frequency difference between the plane waves is very small,
such that 1/1ω is much greater than the exposure time of the
detector, we will see a slowly modulated intensity at the detector,
i.e., a temporal interference pattern. Now, if the two plane wave
components have a randomly varying phase difference, the
intensity fluctuations will again wash out. Therefore, we can
conclude that for nonstationary fields it is more appropriate to
look at the phase relation between the frequency components
instead. The experimental aspects related to this are examined in
more detail in Section 6.A.

Examples of partial coherence can be found everywhere:
blackbody radiation, LEDs, multimode lasers, free-electron
lasers, synchrotron x-ray sources, etc. In fact, all real light sources
are partially coherent. Some, such as single mode lasers, are very
coherent, while others, such as incandescent light bulbs, are very
incoherent. But there are no sources that are completely coher-
ent (or incoherent), only those that are very close to the ideal
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situations. Coherence research usually begins by supposing that
the electromagnetic field is a random process. Thus, expected
values are of interest, so we take averages over an ensemble of
individual realizations. Realizations may be single pulses picked
from a long train of pulses, or long time sections taken from a
continuous wave source. If the members of the ensemble are
denoted with fn(t), then the ensemble average is defined as

〈 f (t)〉 = lim
N→∞

1

N

N∑
n=1

fn(t). (9)

Note that by using the ensemble average, we can circumvent
the problems of using the time average with nonstationary
fields. Employing the ensemble average, we will next define the
correlation functions in the various domains of interest.

A. Spectral Coherence

For simplicity, we will continue to ignore the spatial dependence
of the field in the next few subsections. In general, the spectral
field Ẽ (ω) varies from pulse to pulse. We say that it is a random
process, where each spectral point characterized by ω is a ran-
dom variable. This way, we can come up with a quantitative
measure for most amplitude or phase fluctuations, which is the
two-frequency cross-spectral density function (CSD), defined
as

W(ω1,ω2)= 〈Ẽ ∗(ω1)Ẽ (ω2)〉, (10)

where the asterisk denotes complex conjugate. This is essentially
the expected value of the product between the random variables
Ẽ (ω1) and Ẽ (ω2). That is, the CSD compares the field to itself
at frequencies ω1 and ω2. We can find the energy spectrum (also
known as the spectral energy density) by settingω1 =ω2 =ω,

S(ω)=W(ω,ω)= 〈|Ẽ (ω)|2〉. (11)

The above expression should not be confused with the power
spectrum found in stationary theory. Simple dimensional
analysis shows that the above quantity describes how energy
is spread across different frequencies [28], which can also be
deduced from Parseval’s theorem. This quantity is the main def-
inition of spectrum from the theoretical point of view [29–32],
whereas the so-called time-dependent physical spectrum can be
experimentally relevant (see [33] for more information).

Here, we will briefly comment on the usage of the symbolω as
the mean frequency. It is possible to introduce a coordinate rota-
tion, such that we move from the absolute coordinates (ω1,ω2)

to the average and difference coordinates (ω,1ω). Under this
rotation, the CSD is W(ω,1ω), in which case the spectral
density is given by S(ω)=W(ω,0), since 1ω=ω2 −ω1.
Therefore, the mean frequency is representative of the absolute
frequency of the spectral density one would measure, for any
state of coherence.

We can use the energy spectrum to define the complex
degree of spectral coherence, by normalizing the CSD with the
corresponding energy spectra, as in

µ(ω1,ω2)=
W(ω1,ω2)
√

S(ω1)S(ω2)
. (12)

The complex degree of coherence satisfies the inequalities

0≤ |µ(ω1,ω2)| ≤ 1, (13)

where the minimum and maximum correspond to no correla-
tion and complete correlation in the field, respectively, between
frequenciesω1 andω2.

If all of the field realizations are identical, then every member
of the ensemble has the same form as the average. Therefore, we
can write [34]

W(ω1,ω2)= E∗(ω1)E(ω2). (14)

Substituting this into Eq. (12), we immediately see that
|µ(ω1,ω2)| = 1 for all ω1 and ω2. Thus, the field is com-
pletely coherent, which is equivalent to having a correlation
function that factors intoω1 andω2 dependent parts.

Last, we can define an overall degree of spectral coherence, as in

µ̄=

√∫∫
∞

0 |W(ω1,ω2)|
2dω1dω2∫∫

∞

0 S(ω1)S(ω2)dω1dω2
, (15)

which is essentially a root-mean-squared average over the degree
of coherence. The overall degree of coherence is also limited to
the interval [0, 1], again signifying complete incoherence and
coherence, respectively. Note that this does not depend on the
frequency coordinates, and it is instead an average measure of
coherence over the whole field.

B. Temporal Coherence

We can proceed in the time domain in a similar fashion, and
define the mutual coherence function (MCF) as

0(t1,t2)= 〈E ∗(t1)E (t2)〉. (16)

This is again a measure of correlations in the field between two
instants of time t1 and t2. We can use Eq. (3) to form a relation
between the MCF and the CSD; this is can be viewed as a gener-
alized Wiener–Khintchine theorem,

0(t1,t2)=
∫∫

∞

0
W(ω1,ω2) exp[i(ω1t1 −ω2t2)] dω1dω2.

(17)
Again, we find the average temporal intensity by setting
t1 = t2 = t ,

I (t)= 0(t,t)= 〈|E (t)|2〉, (18)

which is generally time dependent. The complex degree of tem-
poral coherence is then
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γ (t1,t2)=
0(t1,t2)
√

I (t1)I (t2)
, (19)

and it satisfies the inequalities

0≤ |γ (t1,t2)| ≤ 1. (20)

Finally, the overall degree of temporal coherence is

γ̄ =

√∫∫
∞

0 |0(t1,t2)|
2dt1dt2∫∫

∞

0 I (t1)I (t2)dt1dt2
, (21)

which is again limited to the interval [0, 1]. The overall degree of
coherence also has the following property:

γ̄ = µ̄. (22)

In other words, the overall degree of coherence must have the
same value in both temporal and spectral domains. This fol-
lows directly from Eqs. (3) and (4), as well as the application of
Parseval’s theorem.

The correlation functions introduced here are so-called
‘second-order’ correlations, signifying the number of fields
present in the definition. There is some ambiguity in the
nomenclature, and in quantum photonics language these are
“first-order” correlations, since they deal with fields and not
intensities. Some authors prefer to make a distinction between
the field and intensity correlations by instead calling any correla-
tion function with n coordinates an “n-coordinate” correlation
function. Then the above functions would be two-coordinate
correlation functions of the first order (defined with fields, not
intensities). These can be further generalized to higher orders
and coordinate pairs, and we will be adopting this definition for
the rest of the tutorial.

C. Stationary Light

So far, we have been talking about the more general form of the
CSD and MCF, and the preceding forms apply for nonstation-
ary light, such as pulses. However, none of the considerations
above can be used to form a continuous field with a broad spec-
trum, such as black-body radiation. In order to construct such
a model, we need to introduce statistically stationary light. A
statistically stationary field contains random temporal fluctua-
tions of amplitude, phase, and polarization. More importantly,
the statistical properties of such a field are the same no matter
when we choose to measure them, hence the word stationary.
From this we already see that pulses can never be stationary, since
one of their statistical properties, the average intensity, is time
dependent.

The requirement of statistical stationarity is quite restrictive,
since all statistical measures have to be independent of time,
including correlation functions up to infinite coordinate pairs
and orders. However, it is often enough to consider fields for
which only the first two statistical measures (the average field
and average intensity) are time independent. Fields that are
called wide-sense stationary fulfill this requirement.

To find the stationary limit, we reverse Eq. (12), that is, find
the CSD by multiplying the complex degree of coherence with
the corresponding spectral densities

W(ω1,ω2)=
√

S(ω1)S(ω2)µ(ω1,ω2). (23)

Then we again rotate the coordinates by 45 deg to obtain

W(ω,1ω)=
√

S(ω−1ω/2)S(ω+1ω/2)µ(ω,1ω),
(24)

after which we approximate that the spectral density is much
wider than µ(ω,1ω) along the 1ω direction, and that
µ(ω,1ω) is invariant along ω. This is the quasi-homogeneous
approximation [35], which allows us to write

W(ω,1ω)≈ S(ω)µ(1ω). (25)

Inserting this into Eq. (17) and integrating over1ω, we arrive at

0(t,1t)=�c A(t)
∫
∞

0
S(ω) exp(−iω1t) dω, (26)

where 1t = t2 − t1 is the time difference, �c is related to the
spectral coherence width of the distribution chosen forµ(1ω),
and A(t) is a dimensionless envelope function. The station-
ary case is retrieved when the envelope becomes independent
of time, i.e., A(t)= A0. This happens in the limit �c → 0,
i.e., when spectral correlations vanish. Note that this also causes
the MCF to tend toward zero.

To obtain a finite and nonzero correlation function for a
stationary field, the energy spectrum S(ω) must contain an
infinite amount of energy. This is consistent with the definition
of stationarity, since the field must have a constant intensity over
an infinite time interval. One can then rewrite the above integral
as the Wiener–Khintchine theorem

0(1t)=
∫
∞

0
S(s )(ω) exp(−iω1t) dω, (27)

with S(s )(ω) being the power spectrum of a statistically stationary
field, which contains contributions from�c → 0, A(t)→ A0,
and S(ω)→∞. Note that although such a field must carry
an infinite energy, the power spectrum itself is finite. A more
physically relevant field is obtained when the constant inten-
sity is chosen to last over a certain temporal window, which
forces some of the frequencies to become partially correlated.
If there are some spectral correlations, we often call such fields
quasi-stationary.

The left-hand side of Eq. (27) defines a first-order, single
coordinate correlation function, which is the MCF for station-
ary light. It is enough to completely characterize the temporal
correlations of stationary light. Since we recover the average
intensity by setting t1 = t2, we immediately see that the average
intensity, 0(0)= I , is independent of time. In other words,
light is stationary when there are no correlations between fre-
quency components, i.e., a (wide sense) statistically stationary
field is spectrally incoherent since �c → 0. The only excep-
tions to this are perfectly monochromatic fields, for which it is
meaningless to talk about spectral coherence.

Moreover, in the stationary limit the field usually becomes
ergodic, meaning that the time and ensemble averages coincide.
In other words, for stationary light it does not matter whether
one uses the ensemble or time average, although it makes a large
difference for nonstationary fields. Last, by Fourier inversion we
see that
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S(s )(ω)=
1

2π

∫
∞

−∞

0(1t) exp(iω1t) d1t . (28)

Hence, S(s )(ω) and 0(1t) form a Fourier transform pair.
Note that this applies also in the case of nonstationary light,
although 0(1t) contains only a part of the correlation infor-
mation for a nonstationary field. We can measure 0(1t)with a
Michelson interferometer, and see a fringe visibility with varying
1t (path difference). This has immediate applications, such as
optical coherence tomography [36,37] or Fourier transform
spectroscopy [38].

4. PROPERTIES OF NONSTATIONARY FIELDS

Nonstationary fields have several properties that are not found
in their stationary counterparts, while there are also some that
are shared between the two. In the following subsections, we
will look at the basic properties of nonstationary fields, with an
emphasis on experimental aspects.

A. Pulse Length and Shape

For coherent fields, we usually write the time domain field as

E (t)=
√

I (t) exp[iφ(t)− iωc t] , (29)

where
√

I (t) is the time-dependent (real valued) envelope, ωc

is the carrier frequency, and φ(t) is the temporal phase. In the
spectral domain, the same field can be written as

Ẽ (ω)=
√

S(ω) exp[iϕ(ω)] , (30)

where
√

S(ω) is the frequency-dependent (real valued) enve-
lope centered around ωc , and ϕ(ω) is the spectral phase. A
coherent pulse is at its shortest when it has a flat phase, i.e., when
ϕ(ω) is constant. This is called a transform-limited pulse, since
its length is limited only by the properties of Fourier trans-
form. Due to the Fourier relation between time and space, a
transform-limited pulse becomes shorter the wider its spectrum
is. The length of the pulse can then be quantified with standard
measures, such as full-width at half-maximum (FWHM), 1/e 2

width, or root-mean-squared (rms) width.
When the pulse is partially coherent, the situation is a bit

different. In this case, the spectral phase fluctuates from pulse to
pulse around some well-defined mean value ϕm(ω), which can
be separated from the random variableϕr (ω), as in

Ẽ (ω)=
√

S(ω) exp[iϕm(ω)+ iϕr (ω)] . (31)

Hence, even if one were to find a flat mean spectral phase, the
random fluctuations will prevent the pulse from attaining the
transform-limited form.

To quantify this, we need to turn back to the correlation
functions. We can take the generalized Wiener–Khintchine
theorem, and set t1 = t2 = t , to find the mean intensity

I (t)= 0(t,t)=
∫
∞

−∞

∫
∞

0
W(ω,1ω) exp(−i1ωt) dωd1ω,

(32)
where we have again rotated the CSD by 45 deg. This shows that
the whole CSD function contributes to the length of the pulse.

We can take this a step further, and integrate over the difference
coordinate to get

I (t)=
∫
∞

0
Wg (ω,t)dω, (33)

where Wg (ω,t) is the Wigner function corresponding to the
CSD. The intensity is then given by a marginal over the Wigner
function, from where we see that if we want a constant intensity,
then the Wigner function must be infinitely wide along the t
direction. This further implies that the CSD must be infinitesi-
mally narrow along the1ω direction due to the Fourier relation
between the rotated CSD and the Wigner function. Hence,
we have confirmed our assumption of spectral incoherence of
stationary fields.

To further illustrate the effect of coherence on pulse length,
let us consider a specific example. Let us take again the case
of a quasi-homogeneous field, for which the CSD is given by
Eq. (25). Inserting this into Eq. (32), we get

I (t)=
∫
∞

0
S(ω)dω

∫
∞

−∞

µ(1ω) exp(−i1ωt) d1ω, (34)

from which it is easy to see that the integral over ω yields the
total intensity of the temporal pulse, whereas µ(1ω) dictates
the pulse shape. Note that since µ(1ω) is a narrow function,
its Fourier transform must therefore be wide compared to the
transform-limited pulse. In the limit of µ(1ω) becoming
infinitesimally narrow, we again arrive at the stationary case
[31], as outlined in Section 3.C.

B. Propagation through Free Space

Propagation of pulsed beams can be carried out with the stand-
ard angular spectrum method (see, e.g. [25], p. 109 et seq.). For
this purpose, we employ the Fourier transform relation between
time and frequency of Eqs. (3) and (4), as well as between space
and spatial frequency, as in

Ã(κ;ω)=
1

(2π)2

∫∫
∞

−∞

Ẽ (ρ,0;ω) exp(−iκ · ρ) d2ρ, (35)

where ρ = (x ,y ), Ã(κ;ω) is the angular spectrum of the
field, κ = (kx ,ky ) contains the transverse wave vector compo-
nents, and we have started the propagation from an arbitrary
plane denoted as z= 0. Note that the absolute value of the
angular spectrum has no z dependence in linear propaga-
tion problems, and that in free space the refractive index is
n(ω)= 1. Propagation is then handled by multiplying the
angular spectrum with a propagation phase, and inverse Fourier
transforming, as in

Ẽ (ρ,z;ω)=
∫∫

∞

−∞

Ã(κ;ω) exp(ikzz) exp(iκ · ρ) d2κ,

(36)
where

kz =
√

k2 − κ2, (37)

where κ = |κ |. This propagation method is relatively straight-
forward and, yet, quite general: any field that can be expressed as
a superposition of plane waves can be propagated with it. While
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the angular spectrum method is conceptually simple, there are
only a handful of scenarios where it can be analytically carried
out. In practice, it is usually done numerically.

In the case of beams, we can employ the paraxial approxima-
tion of kz to make things simpler:

kz ≈ k −
κ2

2k
, (38)

which are the first two terms from the Taylor expansion of kz.
Substituting this into Eq. (36), and then using Eq. (35), we can
integrate over κ and simplify to get

Ẽ (ρ,z;ω)=
k exp(ikz)

i2πz

∫∫
∞

−∞

Ẽ (ρ ′,0;ω)

× exp

[
ik
2z

(
ρ − ρ ′

)2
]

d2ρ ′, (39)

which is the well-known Fresnel propagation formula. Here
we denote the initial plane (z= 0) transverse coordinates with
a prime (ρ ′) to set them apart from the transverse coordinates
(ρ) at the plane of propagation (z 6= 0). From here, it is quite
simple to further approximate far-zone propagation to get the
Fraunhofer formula.

Propagation of partially coherent light follows the same prin-
ciple as coherent light. We can use Eq. (36) in the definition of
the CSD of Eq. (10), which we can rearrange into the form

W(ρ1,ρ2, z;ω1,ω2)=

∫∫∫∫
∞

−∞

T(κ1,κ2;ω1,ω2)

× exp
[
−i
(
k∗z1 − kz2

)
z
]

× exp
[
−i
(
κ1 · ρ1 − κ2 · ρ2

)]
d2κ1d2κ2,

(40)

from where we can identify the angular correlation function
(ACF), as in

T(κ1,κ2;ω1,ω2)= 〈 Ã∗(κ1;ω1) Ã(κ2;ω2)〉

=
1

(2π)4

∫∫∫∫
∞

−∞

W(ρ1,ρ2;ω1,ω2)

× exp
[
i
(
κ1 · ρ1 − κ2 · ρ2

)]
d2ρ1d2ρ2.

(41)

Note that in Eq. (40), we have chosen z1 = z2 = z, so that we
are concerned with the correlation function at a specific plane of
propagation. It is also possible to look at z coherence [39–41].

We can proceed as in the coherent case and consider the
propagation of paraxial fields, such that the first two terms of the
Taylor expansion

kzj ≈ k j −
κ2

j

2k j
(42)

are sufficient to model the propagation properties of such fields.
Here k j = |k j | =ω j/c 0 is the magnitude of the wave vector
evaluated at the frequency ω j , with j ∈ (1,2), and similarly for
κ j . Using this approximation and inputting from Eq. (41) into

Eq. (40) and integrating with respect to κ1 and κ2 yields the
Fresnel propagation formula for partially coherent light:

W(ρ1,ρ2,z;ω1,ω2)

=
k1k2 exp(i1kz)

4π2z2

∫∫∫∫
∞

−∞

W(ρ ′1,ρ
′

2;ω1,ω2)

× exp

[
−ik

c 1(ρ1 − ρ ′1)
2
− c 2(ρ2 − ρ ′2)

2

2z

]
d2ρ ′1d2ρ ′2,

(43)

where1k = k2 − k1, and we have defined a spectral scaling fac-
tor c j =ω j/ωc , with ωc being some reference frequency, such
as the carrier or center frequency of the field. In the present form,
the equation can be used to propagate a nonstationary paraxial
field to an arbitrary plane z. However, the quadruple integral is
quite cumbersome to evaluate, and since it describes the field
in the spatiospectral domain, it must also be transformed to the
spatiotemporal domain to match experimental settings. It is
possible to introduce approximations such as narrow bandwidth
(c 1 ≈ c 2 ≈ 1, e.g., a few percent of center frequency) and/or
far-zone propagation to cast the integrals into a more manage-
able form. Notably, it is possible to recast this as a topological
problem, where propagation is governed by a continuous defor-
mation of the corresponding Wigner function [42]. Note that
the narrow bandwidth approximation cannot be employed for
ultrashort pulses of several tens of femtoseconds in duration.
There is no sharp limit where the approximation breaks down,
but rather the breakdown is gradual.

C. Spatiotemporal Coupling

A common property of polychromatic fields is that they feature
spatiotemporal coupling; i.e., the temporal properties of the
field depend on the spatial position and vice-versa. In fact, this
is a very general property. Let us say that we have a CSD that
factors into space and frequency contributions at the initial
plane, such that we can write

W(ρ ′1,ρ
′

2;ω1,ω2)=Ws (ρ
′

1,ρ
′

2)W f (ω1,ω2). (44)

With this choice, we see that the spectral properties of the field
do not depend on the spatial position, and therefore there is no
spatiotemporal coupling either. If we input this into the propa-
gation integral of Eq. (43), we get

W(ρ1,ρ2,z;ω1,ω2)

=
k1k2 exp(i1kz)

4π2z2
W f (ω1,ω2)

∫∫∫∫
∞

−∞

Ws (ρ
′

1,ρ
′

2)

× exp

[
−ik

c 1(ρ1 − ρ ′1)
2
− c 2(ρ2 − ρ ′2)

2

2z

]
d2ρ ′1d2ρ ′2,

(45)

from which we immediately see that different frequencies
have very different spatial scaling due to the factors c j . Strictly
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speaking, this causes the field to immediately become spa-
tiotemporally coupled upon propagation, if it has any spectral
bandwidth at all.

However, in many cases the coupling is weak and can be
neglected. For example, in spherical-mirror laser resonators the
waist of the beam is frequency dependent [43], satisfying the
relation

w(ω)=

√
ωc

ω
w0, (46)

where w0 is the beam waist at the reference frequency ωc . This
has the consequence that the Rayleigh range loses its frequency
dependence

zR =
ω

2c 0
nw2(ω)=

ωc

2c 0
nw2

0, (47)

where n = n(ω)∼ constant within the bandwidth of the beam.
This is the definition of an isodiffracting field, and it is by con-
struction spatiotemporally coupled. To propagate it, one needs
to find the supported modes of the cavity, propagate each of
them individually, and then construct the correlation function
from the propagated fields. This is a relatively straightforward
procedure, but the analytical calculations can be very lengthy.
Still, even in this case, the coupling becomes significant only for
single- or sub-cycle pulses, i.e., pulses comparable to, or shorter
than, a single optical cycle [44,45].

On the other hand, ultrashort pulses may feature strong spa-
tiotemporal distortions after interaction with optical elements.
Nonideal lenses that cause aberrations are a common source
of coupling [46], and care must be taken when designing an
optical experiment. Moreover, propagation through nonlinear
media causes the spatial and temporal degrees of freedom to
become linked in a nontrivial manner [47]. Some measures of
spatiotemporal coupling have been introduced in the literature
[46,48], although there is no single widely employed method
for quantifying such coupling. One relatively simple technique
is to take the spatiospectral phase, ϕ(ρ;ω) and expand it in a
Taylor series around a point ξ = (ρ;ω). Then, the coefficients
of the expansion are directly proportional to the strength of the
coupling, being quite similar to the measures introduced in [48].

Of course, spatiotemporal coupling is not always detrimen-
tal. There are several field configurations that are designed to be
spatiotemporal. These include skyrmions, hopfions, spatiotem-
poral optical vortices, orbital angular momentum carrying
pulses, as well as spatiotemporal wave packets [49–58], to name
a few. Each one of these features a specific type of coupling,
which must be introduced with a carefully designed experi-
mental setup. For an overview of the progress in designing,
generating, and employing spatiotemporal light fields, see [59].

5. SPECTRAL EFFECTS

It is often taken for granted that the spectrum of light does not
change on free-space propagation or when two beams of light
are superposed. However, such assumptions may be violated
by radiation emanating from nonconventional light sources
such as pulsed lasers. This was made evident in Section 4.C,
where we noted that the spatial and temporal degrees of freedom
generally depend on each other. Conditions under which the

normalized spectrum remains unchanged during these instances
are specified by the notions of cross-spectral purity [60,61] and
spectral invariance of light [62].

In this section, we give a brief outline of the two concepts
in the context of nonstationary light propagating in vacuum
(n(ω)= 1). Moreover, we review a method of generating cross-
spectrally pure and spectrally invariant fields from isodiffracting
pulsed beams by spectral scale transformations using hybrid
refractive–diffractive imaging systems.

A. Cross-Spectral Purity

Cross-spectral purity is characterized by two-beam interference
of light where the normalized spectrum of the superposition is
the same as that of the interfering fields [60,61]. The concept has
been assessed in many situations dealing with partially coherent
scalar light [63–67], and established also for electromagnetic
fields in both stationary [68–70] and nonstationary domains
[71,72]. Below, we present the concept for nonstationary scalar
fields, where we summarize the results of [73,74].

Consider a superposition of two fields from positions r1 and
r2 at some observation point R. A single spectral realization of
the superposition field at frequencyω is given by [74,75]

Ẽ (R;ω)= Ẽ (r1;ω) exp(iωt1)+ Ẽ (r2;ω) exp(iωt2)

= [Ẽ (r1;ω)+ Ẽ (r2;ω) exp(−iωτ)] exp(iωt1),
(48)

where t j = R j/c 0, R j represents the path length from r j to R,
j ∈ (1,2), and τ = t1 − t2. Superposition of this form can be
implemented, e.g., in wavefront-shearing or -folding interfer-
ometers [75], and it excludes the typical frequency-dependent
factors present in the traditional interferometric configurations,
such as Young’s two-pinhole experiment [25,75]. The require-
ment for cross-spectral purity of light at r1 and r2 is formulated
as follows. If the normalized spectrum

s (r;ω)=
S(r;ω)∫

∞

0 S(r;ω)dω
(49)

is the same for the fields at r1 and r2 and for the superposition at
R corresponding to some value τ = τ0, i.e.,

s(r1;ω)= s(r2;ω)= s(R;ω), (50)

the fields at r1 and r2 are cross-spectrally pure. Generally, the
condition above may be satisfied either everywhere in the
domain of analysis or only at certain pairs of points. This leads to
the following two categories [74]:

(i). If the normalized spectra at points r1 and r2 are the same
and the delay τ0 exists for these points, which fulfills the
second equality above, the fields at r1 and r2 are locally
cross-spectrally pure.

(ii). If the requirements in (i) are fulfilled for all possible
pairs of points within some region—such as a cross-
section of a light beam—the light in that region is globally
cross-spectrally pure.

One might expect that cross-spectral purity is more common
locally rather than globally, although there is no evidence to
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prove that this is the case. At the very least, local purity is simple
to facilitate experimentally, since any partially coherent beam
can be transformed into a locally cross-spectrally pure beam
with a specular CSD [76–78]. A CSD is called specular when
it satisfies W(ρ1,ρ2;ω1,ω2)=W(−ρ1,ρ2;ω1,ω2), in which
case cross-spectral purity is satisfied at symmetric positions ρ1
and ρ2 =−ρ1 along the cross section of a beam. On the other
hand, beams with a CSD of the separable form given by Eq. (44)
are globally cross-spectrally pure across the plane on which the
factorization holds. In other words, a globally cross-spectrally
pure field is not spatiotemporally coupled at some specific plane
of propagation. However, as noted above, purity vanishes and
the field becomes coupled as it propagates any finite distance
from that plane [73].

A specific property of cross-spectrally pure light fields is the
reducibility of the coherence functions. For stationary light,
this is manifested by the complex degree of temporal coherence
satisfying the reduction formula [60,61]

γ (r1,r2;1t)= γ (r1,r1;τ0)γ (r1,r1;1t − τ0), (51)

which implies that the space-time domain coherence functions
of a cross-spectrally pure stationary field decompose into two
factors. One of these factors contains the information of spa-
tial coherence at points r1 and r2, and the other characterizes
temporal coherence at one of the points.

In the case of nonstationary fields, we note that the MCF in
Eq. (16) contains dependence on the two temporal coordinates
instead of their difference 1t , implying that the space-time
domain correlation functions of a nonstationary field cannot be
applied directly to the expression above. However, an analogous
result can be formulated in terms of the time-integrated MCF

0̄(r1,r2, 1t)=
∫
∞

−∞

0(r1,r2;t,1t)dt (52)

and the associated degree of coherence

γ̄ (r1,r2;1t)=
0̄(r1,r2;1t)√

0̄(r1,r1;0)0̄(r2;r2,0)
, (53)

with t = (t1 + t2)/2. In particular, it can be shown that the
reduction formula [74]

γ̄ (r1,r2;1t)= γ̄ (r1,r2;τ0)γ̄ (r1,r1;1t − τ0) (54)

holds for cross-spectrally pure nonstationary fields. The degree
of coherence associated with the time-integrated MCF thus
factors into a product of spatial and temporal parts, which is
similar to the stationary-field result in Eq. (51).

As a last remark of this subsection, we briefly comment on
the measurement of cross-spectral purity. Since the wavefront
folding and shearing interferometers can be used to form the
superposition of Eq. (48), they can also be used to quantify
cross-spectral purity. One just needs to measure the spectrum of
the incident light from the two arms individually, as well as in
the superposition (with, e.g., a fiber spectrometer).

B. Spectral Invariance

The concept of spectral invariance, introduced by Wolf in 1986,
refers to a situation where the normalized spectrum in the far

zone of a planar, secondary source is invariant with respect to
the far-field observation direction, and equal to the normalized
source spectrum [62]. In particular, the celebrated Wolf’s scaling
law specifies the condition for the spatial coherence of a quasi-
homogeneous light source [25] under which light emanating
from a source is spectrally invariant. The scaling law is satisfied
in many common situations, although light sources that violate
it can be easily found and designed. In the latter case, remarkable
spectral effects such as red- and blue-shifting may take place
[79–84]. Spectral invariance has been extensively studied in the
context of stationary light [85–90], and very recently extended
to nonstationary fields [91].

Spectral invariance is an enabling factor in astronomy, since
Wolf showed that usual interstellar objects radiate light that
satisfies the scaling law. Moreover, it has added significance in
nonstationary optics, since an invariant spectrum implies that
the temporal domain properties may also be conserved upon
propagation to the far zone. In what follows, we review the con-
cept of spectral invariance for nonstationary light and present
the nonstationary-field version of the scaling law.

The spectrum of a field in the far zone of a planar, secondary
light source is obtained by employing the angular spectrum rep-
resentation of Eq. (36) together with the method of stationary
phase (see [25], p. 128 et seq.), and is given by

S(∞)(ŝ;ω)=
(

2π s z

r

)2(
ω

c 0

)2

T
(
ω

c 0
σ ,
ω

c 0
σ ;ω,ω

)
. (55)

Here ŝ = (σ ,s z) is a unit vector that specifies the observation
direction in the far zone, with σ = (s x ,s y ) and s z representing
the transverse and longitudinal components of ŝ , r being the
distance from the source, and T(κ1,κ2;ω1,ω2) being the angu-
lar correlation function from Eq. (41). Further, the normalized
spectrum in the far zone is written as

s (∞)(ŝ;ω)=
S(∞)(ŝ;ω)∫

∞

0 S(∞)(ŝ;ω)dω
. (56)

We define the condition for a nonstationary light field to be
spectrally invariant as follows. First, the normalized far-zone
spectrum is required to be independent of observation direc-
tion, s (∞)(ŝ;ω)= s (∞)(ω). Second, the normalized spectrum
at the far zone must be equal to the normalized source-integrated
spectrum

s̄ (ω)=
S̄(ω)∫

∞

0 S̄(ω)dω
, (57)

with S̄(ω)=
∫
∞

0 S(ρ;ω)d2ρ being the source-integrated spec-
tral density. We remark that the second requirement is a relaxed
version of that in [62] for stationary fields, where the spectrum
is demanded to be constant across the source plane. Such a gen-
eralization is physically appropriate, since the spectrum in many
natural and manmade light sources exhibits spatial variations
across the source plane.

It was shown in [91] that the conditions s (∞)(ŝ, ω)=
s (∞)(ω)= s̄ (ω) are satisfied for a source whose CSD is of the
form

W(ρ1,ρ2;ω1,ω2)= [S(ρ;ω1)S(ρ;ω2)]
1/2g (ρ1,ρ2;ω1,ω2),

(58)
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with ρ = (ρ1 + ρ2)/2, and the function g (ρ1,ρ2;ω1,ω2)

obeying

g (ρ1,ρ2;ω,ω)= ν(1ρ;ω)=
H(ω1ρ/c 0)

H(0)
, (59)

where 1ρ = ρ2 − ρ1. Above, H(ω1ρ/c 0) is a function
containing dependence on the spatial and spectral variables
solely via the product ω1ρ. The expression in Eq. (59) forms
the scaling law for spectral invariance of nonstationary fields,
which ensures that the normalized spectrum of light is the
same across the far zone and equal to the normalized source-
integrated spectrum. In addition, we remark that the form
above reduces to Wolf’s scaling law when stationary and
quasi-homogeneous fields are considered. In particular, if
the single-frequency CSD of a stationary field is of the form
W(ρ1,ρ2;ω)= S(ω)ν(1ρ;ω), the function ν(1ρ;ω) must
obey the latter equality in Eq. (59) for the field to be spectrally
invariant.

Furthermore, for quasi-homogeneous sources mentioned in
Section 4.A, we have ν(1ρ;ω)≈µ(1ρ;ω). This leads to the
original Wolf’s scaling law, which states that the information on
the degree of coherence at all frequencies is obtained from the
degree of coherence at a single frequency by scaling the position
difference1ρ.

C. Experimental Aspects

Next, we present a feasible method for transforming isodiffract-
ing pulsed beams into nonstationary fields exhibiting either
cross-spectral purity or spectral invariance, as described in [92].
Isodiffracting beams, as outlined in Section 4.C, are specified by
their frequency-independent Rayleigh range, which is caused
by the spectral scaling of the beam waist given by Eq. (46). Such
fields are generated in paraxial spherical-mirror laser resonators,
forming an important class of model fields in nonstationary
optics. Such beams are thus an appealing starting point for the
transformations.

We begin by considering the CSD of an isodiffracting field at
frequenciesω1 andω2, which is given by [45]

W(ρ1,ρ2;ω1,ω2)=

(
ω1

ωc

ω2

ωc

)1/2

[S0(ω1)S0(ω2)]
1/2

× exp

(
−

1+ β2

2β

ω1ρ
2
1 +ω2ρ

2
2

ωcw
2
0

)

× exp

(
1− β2

β

√
ω1ω2

ωc

ρ1 · ρ2

w2
0

)
. (60)

Above, S0(ω) is a spectral weight function, and 0≤ β ≤ 1,
where β = 1 corresponds to complete spatial coherence of the
field, β� 1 implies that the field is quasi-homogeneous, and
β→ 0 corresponds to spatial incoherence.

To accomplish the transformations, we employ paraxial
afocal imaging systems. Such systems add a chromatic compen-
sation to the isodiffracting beam, modifying the spectral scaling
of the beam waist so that the beam at the system output is of
the desired form in each transformation. In the design process,
the paraxial ABC D system matrix is used, which, for an afocal

imaging system, has the expression [93]

M(ω)=
[

A(ω) B(ω)
C(ω) D(ω)

]
=

[
M(ω) 0

0 1/M(ω)

]
. (61)

Here M(ω) represents the frequency-dependent magnification
of the system. The effect of the system on the input field can be
assessed by employing the Collins diffraction integral [94] and
using the method of stationary phase at the limit B(ω)→ 0. As
shown in [92], the resulting CSD at the output plane of a system
illuminated by an input isodiffracting beam is

W(ρ1,ρ2;ω1,ω2)

=
exp(i1ωL/c 0)

M(ω1)M(ω2)

(
ω1

ωc

ω2

ωc

)1/2

[S0(ω1)S0(ω2)]
1/2

× exp

{
−

1+ β2

2β

[
ω1

ωc

ρ2
1

M2(ω1)w
2
0

+
ω2

ωc

ρ2
2

M2(ω2)w
2
0

]}

× exp

[
1− β2

β

√
ω1ω2

ωc

ρ1 · ρ2

M(ω1)M(ω2)w
2
0

]
,

(62)

where L represents the axial length of the system. From the
expression above, one can see that with a proper choice of the
magnification, M(ω), the coherence properties of the input
beam may be tailored to meet the requirements of the desired
transformations.

For a cross-spectrally pure output field, we aim to produce a
CSD of the separable form given by Eq. (44), which implies lack
of space-frequency coupling and thus cross-spectral purity of the
beam at the system output plane. In particular, we find that the
choice

M(ω)=
√
ω

ωc
M(ωc ) (63)

leads to a separable CSD, with the space and frequency factors
being

Ws (ρ1,ρ2)=
1

M(ωc )
exp

[
−

1+ β2

2β

ρ2
1 + ρ2

2

M2(ωc )w
2
0

]

× exp

[
1− β2

β

ρ1 · ρ2

M2(ωc )w
2
0

]
(64)

and

W f (ω1,ω2)= exp(i1ωL/c 0)[S0(ω1)S0(ω2)]
1/2, (65)

respectively. Note that the magnitude of the magnification in
Eq. (64) can be chosen arbitrarily, while preserving the spectral
characteristics of Eq. (65). In other words, this type of system
offers ideal, distortion-free focusing of isodiffracting pulsed
beams.

On the other hand, when pursuing a spectrally invariant out-
put field, we select

M(ω)=

√
ωc

ω
M(ωc ). (66)
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Fig. 1. Lens system geometry for the spectral scale transformations.
Lenses L1 and L2 are (refractive or diffractive) thin lenses at positions
defined by distances d1, d2, and d3 between the system input and out-
put planes.

This leads to the output CSD being expressible as in Eq. (58),
where the factor g (ρ1,ρ2;ω1,ω2) satisfies the scaling law of
Eq. (59):

g (ρ1,ρ2;ω,ω)= ν(1ρ;ω)

= exp

[
−

(
ω

ωc

)2
1ρ2

2M2(ωc )w2β2

]
. (67)

This ensures that no matter what the spectrum is, its shape will
be preserved upon far-zone propagation, and that the spec-
trum is invariant with respect to the observation direction.
This further implies that the temporal profile of the field is the
same across the whole wavefront if the field does not meet any
dispersive material during propagation.

In [92] it was shown that systems with magnifications given
by Eqs. (63) and (66) can be approximately realized with hybrid
designs whose geometry is illustrated in Fig. 1. Both designs
consist of one refractive achromatic lens and one diffractive
lens [95]. The focal lengths of the lenses are the same for both
systems, while the order of the lenses and their separations
from the conjugate planes specify the nature of the transfor-
mation. For cross-spectrally pure output, the diffractive lens is
positioned before the achromat in Fig. 1, and the separations
d j , j ∈ (1, 2, 3), are chosen so that the magnification

M(ω)=
3ω−ωc

2ω
M(ωc ) (68)

is achieved (see [92] for details). The form above coincides with
the ideal magnification of Eq. (63) atω=ωc and approximates
it otherwise, with the accuracy of the approximation illustrated
in Fig. 2(a). Further, reversing the arrangement leads to a magni-
fication

M(ω)=
ω+ωc

2ω
M(ωc ), (69)

which is, in turn, an approximation of Eq. (66). The accuracy of
this approximation is demonstrated in Fig. 2(b).

Next, we evaluate the precision of the two systems in accom-
plishing the desired transformations, where we choose a model
weight function S0(ω) of the power-exponential form [45,96]

[S0(ω)]
1/4
=

(ωc

ω

)1/4 1
√
0(2p)

(
2p

ω

ωc

)p

exp

(
−p

ω

ωc

)
.

(70)
Above, ωc is the center frequency, p is a real positive constant
that can be varied to control the spectral bandwidth, and0(x ) is
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Fig. 2. First row: comparison between the ideal and approximated
magnifications M(ω) for (a) cross-spectral purity and (b) spectral
invariance at output of the transformation system, with M(ωc )=−1.
Second row: (c) normalized spectrum at the spatial positions |ρ| = 0,
|ρ| =w0/2, and |ρ| =w0 at the output plane of the system with
the approximated magnification of Eq. (68), plotted over a range
of wavelengths λ around the wavelength λc = 2πc 0/ωc . In addi-
tion, the normalized spectrum of an ideal cross-spectrally pure field
obtained with the magnification of Eq. (63) is shown. (d) Normalized
source-integrated spectrum at the output plane of the system with
the magnification of Eq. (69), and the normalized far-field spectra
at directions θ = 0, θ = φ/2, and θ = φ proportional to the 1/e 2

divergence angle φ. The spectra in (c) and (d) are normalized by the
values at λ= λc . Adapted from [92].

the gamma function. We have chosen p = 5, which corresponds
to an ultra-broadband isodiffracting beam [45].

In Fig. 2(c), we have plotted the normalized spectra obtained
by substituting the approximate magnification of Eq. (68)
into Eq. (49) and using Eq. (49). Further, we have cho-
sen β = 0.1 and M(ωc )=−1. The normalized spectra at
three radial positions across the transversal beam width are
depicted at the output plane of the system designed to generate
a cross-spectrally pure beam. The graph also includes the ideal
normalized spectrum obtained by using Eqs. (44), (49), (64),
and (65). The transformation yields a nearly cross-spectrally
pure field in the proximity of the wavelength λc = 2πc 0/ωc

and maintains a reasonable level of accuracy when λ/λc < 1.
However, departure from the ideal becomes more pronounced
at longer wavelengths. To be specific, the normalized spectrum
widens relative to the ideal along points on the optical axis and
gradually narrows with increasing radial distance from the axis.

Figure 2(d) demonstrates the performance of the system
aimed at producing a spectrally invariant output field. The
figure displays the normalized far-field spectra obtained by
employing Eqs. (62) and (69) together with Eqs. (41), (55), and
(56), at three specific observation directions. In addition, the fig-
ure includes the normalized spatially averaged source spectrum
for the secondary source at the system’s output plane, calculated
by placing the magnification from Eq. (69) into Eq. (62) and
using Eq. (57). We note that the curves depicted in Fig. 2(d) are
essentially indistinguishable when λ< λc , and they maintain a
relatively close correspondence at long wavelengths. The on-axis
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far-field spectrum exhibits a slight increase in width compared
to the source-averaged spectrum, narrowing as the observation
angle increases. Comparing Figs. 2(c) and 2(d), it is evident that
the approximative magnification in Eq. (69) is more accurate at
generating a spectrally invariant field than the magnification in
Eq. (68) is at producing a cross-spectrally pure field.

6. MEASUREMENT SCHEMES

Measurement of nonstationary fields is one of the major tech-
nological challenges in photonics. In the present tutorial we
will focus on the measurement of visible light, with limited
applicability to infrared and ultraviolet regions. For information
on plausible measurement schemes in these wavelength regions,
see [97–99]. While the spatial properties of nonstationary fields
can be characterized with time-averaging methods (see [75]
for a review of spatial coherence measurement techniques),
the temporal/spectral properties require more attention. This
is inherently due to the time-dependent nature of the fields,
and methods such as Michelson interferometry do not capture
the essential details of nonstationary fields [100]. Several pulse
measurement techniques have been introduced over the years
[32,46,48,101,102], and here we give a very brief overview on
some of the most common techniques that can be used to detect
partial temporal coherence.

A. Frequency-Resolved Optical Gating

One of the first setups to measure pulse shapes was the intensity
autocorrelation (see, e.g., [102] p. 66 et seq.). The method is very
simple: take a linearly polarized pulse, split it into two, rotate
the polarization of one of the copies by 90 deg, and overlap
them at a second harmonic generating crystal as a function
of time delay. The resulting second harmonic signal is then
proportional to the original pulse. However, the problem with
this method is that the retrieval of the original pulse from such
a signal does not have a unique solution. That is, one signal can
correspond to more than one pulse. This problem becomes
more pronounced if the repetition rate of the laser is so high that
single-shot measurements cannot be carried out.

Frequency-resolved optical gating (FROG) resolves this
ambiguity by introducing spectral resolution to the detec-
tion. The resulting FROG interferogram for a single pulse is
essentially unique [103], and the original pulse can be unam-
biguously recovered with an iterative retrieval algorithm (when
there is no measurement error). The method outlined above is
the fundamental FROG instrumentation, now known as the
second harmonic generating (SHG) FROG, which is depicted
in Fig. 3(a). There is a large family of different types of FROG
measurement setups, such as polarization gating FROG, spatial
encoded arrangement for temporal analysis by dispersing a
pair of light E-fields (SEA-TADPOLE), as well as spatially and
temporally resolved intensity and phase evaluation device: full
information from a single hologram (STRIPED FISH).

However, all of the multishot FROG instruments share their
fundamental properties, and as such we will limit our discussion
to the SHG FROG. Introducing spectral resolution allows
one to increase the available information on the pulse to itera-
tively retrieve its amplitude and phase. The interferogram one

(c)

(a)

(b)

Fig. 3. (a) Fundamental components for an SHG FROG: two
copies of a pulse with orthogonal polarizations are mixed in a second
harmonic generating crystal with varying delay1t . A is aperture, and
S is an imaging spectrometer. (b) Flowchart of FROG retrieval algo-
rithm, color coded to correspond to the application of the constraints
in (c). The correct solution is somewhere within the overlapping
constraints in (c), and the space of solutions that satisfy both con-
straints becomes bigger with decreasing coherence, and increasing
measurement error.

measures from an SHG FROG obeys the equation

ISHG(1t,ω)=

∣∣∣∣∫ ∞
−∞

E (t)E (t −1t) exp(−iωt)dt

∣∣∣∣2. (71)

It is notable that the interferogram is superficially similar to the
Wigner distribution,

Wg (t,ω)=
∫
∞

−∞

E ∗(t)E (t −1t) exp(−iω1t)d1t, (72)

although there is no clear connection between the two. One of
the well-known properties of the Wigner distribution is that its
marginals yield expectation values; that is, integration over time
gives the mean energy spectrum and integration over frequency
the average temporal pulse. Because of this similarity, one may
be tempted to look at the marginals of the FROG interfero-
gram to find these properties. Unfortunately, only the energy
spectrum can be retrieved from the marginals [104], and we
are forced to use iterative methods if we wish to also find the
temporal pulse shape.

A FROG retrieval algorithm generally works as outlined in
the flowchart of Fig. 3(b): start from a guess for the pulse length
and spectrum, and mathematically construct an interferogram.
Then, discard the amplitude of the resulting FROG trace and
replace it with the experimentally measured one, while retaining
the phase. Finally, invert the interferogram to find how the pulse
and spectrum have changed and update your guess. In essence,
what this algorithm retrieves is not the pulse, but the phase of
the interferogram, which can be used to find the pulse. The
convergence of this algorithm is a key issue, and for pulses with
sufficiently low complexity (small time–bandwidth product), it
is fairly reliable. Figure 3(c) depicts the convergence properties
of the algorithm with a Venn diagram, showing that there are
essentially two constraints that need to be fulfilled.
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When the pulse train is completely coherent, FROG can
reliably find the pulse shape and phase. However, for partially
coherent light, the situation is slightly different. The interfer-
ogram of a single pulse still follows Eq. (71), but since each
pulse in the train is generally speaking different, the resulting
interferogram also varies from pulse to pulse. If the detector is
slow compared to the repetition rate of the pulse train, then the
resulting time-averaged interferogram is an incoherent sum of
the individual interferograms. The time-averaged version does
not correspond to any single pulse, and therefore the retrieval
is no longer unique. The algorithm can only estimate a typical
pulse belonging to the sum, and the so-called FROG error will
be high.

To properly assess the coherence properties of a partially
coherent pulse train with FROG, one will need single-shot
capabilities to measure a large number of individual pulses from
the train. Afterwards, it is possible to numerically construct the
correlation function describing the pulse train [105]. However,
this method does not capture the effect of carrier-envelope
offset phase (unless the pulse is on the order of a single cycle) and
linear spectral phase. These properties must be measured with
alternative methods, such as f-to-2f interferometry [106] and
time-of-arrival measurements with an oscilloscope and a fast
detector, respectively.

FROG devices with single-shot modes include STRIPED
FISH, and grating-eliminated no-nonsense observation of
ultrafast incident laser light E-fields (GRENOUILLE). If the
repetition rate of the pulse train is very high (megahertz to giga-
hertz), then single-shot measurements may not be feasible. In
such situation one is forced to make a rough evaluation of the
coherence properties numerically [107].

B. Spectral Phase Interferometry for Direct Electric
Field Reconstruction

Whenever two signals with different carrier frequencies are
superposed, the result will be a time-dependent interference
pattern, such as the one in Eq. (7). In principle, it is possible to
find the phase difference between the two interfering waves.
However, it is nearly impossible in practice, due to the extremely
high frequency of visible light. To date, there are no meth-
ods that directly measure signals at sufficiently high sampling
frequencies to directly evaluate phase differences between opti-
cal fields of appreciable bandwidth. Spectral interferometry (SI)
circumvents this problem by using a reference pulse, which must
be known, stable, and contain the same frequency components
as the pulse to-be-measured (i.e., they must spectrally overlap).

SI is a linear method that can be used to find the signal pulse
without iterative retrieval methods. However, the requirement
of a known and stable reference pulse at the desired frequency
is experimentally very demanding. Spectral phase interfer-
ometry for direct electric field reconstruction (SPIDER) is a
self-referencing technique, which is not quite as demanding
[32,101]. But similarly to most FROG techniques, this method
also requires a nonlinearity.

The concept behind SPIDER is shown in Fig. 4: two pulses
separated by a time delay τ are sum-frequency mixed with an
orthogonally polarized and massively chirped pulse. The spec-
tral interference pattern is then recorded with a spectrometer.

Fig. 4. Basic configuration for a SPIDER apparatus. A pulse pair
is inserted into a second-order nonlinear crystal together with an
orthogonally polarized and massively chirped pulse, where all three
pulses are derived from the same initial pulse. The nonlinear crystal is
cut for sum-frequency generation, and the upconverted pulse pair is
selected with the aperture A and measured with the spectrometer S.

The chirped pulse is used to accomplish a spectral shear, since
the frequencies in the pulse separate temporally when the chirp
is large enough, and the temporal separation τ determines the
fringe spacing in the resulting spectral interference pattern.

Obviously, this is just one variation of SPIDER, though it
may be the most common one. Any device that mixes a pulse
with a spectral slice of itself in a sum-frequency generating
crystal, and then measures the spectral interference between two
upconverted pulses, can be considered to be in the same family
of experimental methods. SPIDER is often considered to be a
temporal domain measurement, since the end goal is to find the
shape of the temporal pulse. But it is in fact more appropriate to
consider it as a frequency domain method, since it measures the
spectral interference pattern at the detector, which is given by

S(ω,1ω)=
〈∣∣Eu(ω−1ω/2)+ Eu(ω+1ω/2) exp(−iωτ)

∣∣2〉 ,
(73)

where the subscript u denotes the upconverted pulse obtained
via sum-frequency generation. Following the conventions in the
earlier sections, we can write the spectral fringe pattern in the
form

S(ω,1ω)= Su(ω−1ω/2)+ Su(ω+1ω/2)

+ 2
√

Su(ω−1ω/2)Su(ω+1ω/2)

×<
{
µu(ω,1ω) exp(−iωτ)

}
, (74)

from which we see that the SPIDER apparatus measures a slice
from the spectral correlation function µu along the ω direction
at a fixed spectral shear1ω.

Note that this correlation function corresponds to the upcon-
verted pulse. One slice is enough to directly find the spectral
phase of a coherent original pulse [108–110], as long as the
spectral shear is sufficiently larger than zero. If 1ω= 0, then
the phase terms exactly cancel out, and the measurement yields
only the spectral density. Even at a moderate spectral shear,
the high frequency phase components wash out for partially
coherent pulses, and the method yields an erroneous result for
the pulse length [111]. If one is able to measure the correlation
function of the upconverted pulse train for all combinations
of spectral coordinates (ω, 1ω), and relate the upconverted
field to the original field, then SPIDER can be used to measure
the whole correlation function of the original pulse train [112].
Unfortunately, such a method has not been experimentally
demonstrated as of yet.
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C. Field Cross-Correlation

There are cases where one can obtain a realistic pulse length
estimate, but the spectral phases of individual pulses cannot be
measured with standard techniques, due to limitations caused
by high repetition rate, incompatible wavelength region, or low
incident power. In such cases, a linear self-referencing method,
such as the field cross correlation [113], is desirable to probe the
stability of the field.

Let us say that we have a pulse train from where we pick two
different pulses and interfere them. This can be done with,
e.g., an unbalanced Michelson interferometer, if the repetition
rate is high enough [114]. In this case, the temporal field is given
by

E (ρ;t,1t)= E i (ρ;t)+ E j (ρ;t +1t), (75)

where i, j correspond to different pulses, and the time delay1t
can be chosen such that they overlap between the pulses varies.
If this superposition is directed to a slow detector, it will measure
the time-averaged intensity pattern, which is of the form

I (ρ;1t)= Ii (ρ)+ I j (ρ)

+ 2<

{∫
〈E ∗i (ρ;t)E j (ρ;t +1t)〉dt

}
, (76)

where Ii and I j stand for the individual time-integrated pulse
intensities, and angle brackets denote ensemble averaging over a
large number of pulses. The last part of this relation is the cross-
correlation term, 〈X (ρ;1t)〉 =

∫
〈E ∗i (ρ;t)E j (ρ;t +1t)〉dt ,

and therefore we can write

I (ρ;1t)= Ii (ρ)+ I j (ρ)+ 2|〈X (ρ;1t)〉| cos[8(ρ;1t)],
(77)

where8(ρ;1t) is the phase of the cross correlation. The abso-
lute value of the cross-correlation term is encoded into the
visibility of interference fringes, while the phase is found from
their positions.

In [113], it was found that it is possible to approximate

〈X (ρ;0)〉 ≈ µ̄(ρ)
√

Ii (ρ)I j (ρ), (78)

which can be substituted directly into Eq. (77) together with the
choice1t = 0, to obtain

I (ρ;0)≈ Ii (ρ)+ I j (ρ)+ 2
√

Ii (ρ)I j (ρ)|µ̄(ρ)| cos[8(ρ, 0)],
(79)

Therefore, the overall spectral degree of coherence—which is
a useful measure of the stability of the field—can be evaluated
with only one temporal measurement point, which happens to
be at zero time delay. Moreover, the approximation of Eq. (78)
becomes better the more coherent the measured field is.

Measuring the cross-correlation trace across the full breadth
of delays where it is visible also allows one to approximate the
detailed spectral coherence properties, since

Sqc(ρ;ω)=F−1
{|〈X (ρ;1t)〉| cos[8(ρ;1t)]}

=F−1
{[I (ρ;1t)− Ii (ρ)− I j (ρ)]/2}, (80)

where F−1 denotes the inverse Fourier transform, and
Sqc(ρ;ω) is the quasi-coherent part of the spectrum [115,116].

Comparing this with the overall energy spectrum S(ρ;ω) allows
one to find the portions of the spectral field that feature high or
low coherence [113].

7. DISCUSSION AND CONCLUSIONS

The present tutorial covers the essentials of nonstationary
optics, starting from the basic building blocks and fundamental
objects of study—that is, monochromatic plane waves and
correlation functions, respectively—and going through some
of the main properties, as well as the associated measurement
schemes. The tutorial includes the definitions of nonstationary
coherence in time and frequency, as well as a brief discussion
about the stationary limit. Properties such as pulse length and
shape, propagation through free space, and spatiotemporal
coupling were considered in detail. In all cases, the whole cor-
relation function contributes to the problem, which underlines
the importance of including statistical fluctuations through the
CSD and MCF, when necessary.

Special attention to spectral effects was warranted, since
cross-spectral purity and spectral invariance are fundamental
properties of light, although they are generally not fulfilled.
Notably, the device for introducing desired spectral scaling
transformations allows one to achieve ideal focusing without
spatiotemporal coupling. Finally, some of the most popular
pulse measurement schemes—FROG and SPIDER—were
discussed from the coherence theoretic point of view. In particu-
lar, the connection between increased FROG error and partial
temporal/spectral coherence was explicitly stated. Moreover, the
capability of SPIDER in measuring spectral correlations of the
upconverted pulse was pointed out.

However, only the bare essentials were covered in the
present work. The tutorial does not discuss the generation
and manipulation of nonstationary waves, apart from a super-
ficial level. Additionally, many topics were excluded, such as
the connection between coherence and polarization [117–
123], time-dependent polarization modulation [124–127],
geometric phase [127–132], correlation-induced effects
[42,85,133–138], and interaction between nonstationary fields
and matter [139–143], just to name a few.

Nonstationary optics is an active and vibrant area of research,
with several possible research directions. These include the
research of fundamental aspects, such as the study of structured
light fields, the polarization and coherence of three dimensional
light, as well as correlation-induced effects. Moreover, nonsta-
tionary optics hosts a wide range of application oriented research
areas, such as micromachining, pulse generation, and the mea-
surement of nonstationary fields. In particular, the generation
and measurement have been historically important, since
shorter pulses have allowed greater advances in multiple related
areas. Overall, nonstationary optics is expected to provide a large
number of important advances in the near future.
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